

Review Paper:

Oral-Gut Dysbiosis: Causative for the Initiation of Brain Cognitive Memory Decline

Murugan MukilanDepartment of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore 641 006, Tamil Nadu, INDIA
mukilan@srcas.ac.in**Abstract**

Oral passage and intestinal tract are some of the important microecosystems present in humans. In these microecosystems, approximately 10^{14} bacterial colonies are present with 2000 known bacterial species. These bacterial colonies are responsible for the maintenance of normal oral and gut microbiota. The presence of these common oral and gut microbiomes results in the regulation and development of cognitive functions in the brain. Imbalance in this normal flora, results in the development of impaired cognitive functions. In a healthy state, oral and gut microbiomes are present in a balanced state (BS) and do not have any impact on cognitive functions. Whenever this BS is affected by internal or external microorganisms, it may result in the formation of dysbiosis in oral and gut microflora. Later on, it results in the development of impaired cognitive functions.

In the present review, we presented the impact of normal oral and gut microflora in the development of cognitive functions and discussed the reversal of oral and gut dysbiosis-induced impaired cognitive functions with the help of probiotic microorganisms. Recent research studies showed that oral beneficial flora plays a major role in the reversal of impaired cognitive functions through the secretion of neurotransmitter precursors chemical compounds (NPCs) (short-chain fatty acids [SCFAs], tyrosine, levodopa [L-DOPA], tryptophan and 5-hydroxytryptophan [5-HTP]). Secreted NPCs are further transmitted to the brain for the formation of neurotransmitters like dopamine, glutamate, gamma-aminobutyric acid (GABA), serotonin and norepinephrine. Further, these synthesized neurotransmitters result in the reversal of cognitive memory formation by strengthening the synaptic connections present in the brain through the molecules involved in neuronal signaling pathways.

Keywords: Cognitive Decline, Gut Microbiota, Learning, Memory, Oral Microbiota.

Introduction

The oral microbiome is a diverse microbiota with an approximate amount of 700 bacterial species including bacteria, fungi, viruses and protozoa. It acts as a complex habitat for invading microorganisms and serves as a crucial

region for the maintenance of oral and systemic health^{16,22,63}. It acts as the second-largest microbial community in a human host. This human microbiome (HM) consists of two different microbiomes i.e. core microbiome (CM) and variable microbiome (VM). CM is common for all individuals whereas VM differs from person to person based on their lifestyle and differences in their physiological conditions.

For the colonization of microorganisms, two different surfaces of the oral cavity (OC) were used by the microorganisms for their colonization, they are classified as teeth surfaces (TS) and oral mucosa (OM). TS consists of hard and soft tissues provides a platform for the anchorage of microorganisms in the OC. Other than TS and OM, tongue, hard palate, cheeks, soft palate, gingival sulcus and tonsils may provide a nutrient-rich medium for the growth of microorganisms in the OC. Colonization and multiplication of bacterial species in the OC result in the formation of biofilm structures^{16,54,73,79}.

These microbial communities present in the OC play a major role in physiological, immunological and metabolic functions like prevention of microbial invasion, digestion of food, absorption of nutrients, generation of energy, differentiation, maintenance and maturation of the host immune system. Interaction between different homeostasis mechanisms may result in the interaction between OC and host in varying scalar quantities^{28,62,76}. The present review explores the role of normal oral/gut flora in synaptic plasticity formation through the gut-brain axis.

Role of Oral Microbiota in the Development of Cognitive Functions: During normal conditions, stimulus exposure (SE) results in the formation of long-term memory (LTM) with the help of synaptic plasticity changes. Formed synaptic plasticity refers to the stimulus-dependent active changes occurring in the presynaptic neurons which play a major role in the formation of cognitive memory including short-term memory (STM) and LTM^{1,19}. These synaptic changes were observed in several animal models as a result of repeated stimulus exposure for a limited period and defined as long-term potentiation (LTP). In the initial phase of cognitive memory formation, LTP formation may depend on neuronal transcription factors and neuronal pathways for the development of long-term plasticity changes (LPC).

Recent reports have shown that LPC results in the formation of LTM through the recruitment of new proteins by the process of de novo protein synthesis^{19,37}.

Initially, LTP results in the release of neurotransmitters from the presynaptic neurons as a result of activity-dependent changes. The released neurotransmitter binds with the postsynaptic receptors and results in the activation of adenyl cyclase (AC), protein kinase A (PKA), extracellular signal-regulated kinase-1/2 (ERK-1/2) and mitogen-activated protein kinase (MAPK). Activation of ERK-1/2 and PKA may result in the activation and phosphorylation of cyclic AMP response element-binding protein (CREB)^{20,21,50}. Phosphorylation of CREB further activates the immediate early gene (IEG) cascade (*Egr-1*, *C-fos* and *C-jun*) and other post-synaptic density proteins (PSDs) for the formation of LTM. Other than activation of IEGs and PSDs, CREB may also be needed for the regulation of certain microRNAs (miRNAs) during LTM formation^{7,29,48,49,56,68}.

Recent research studies showed that oral gut microbiota plays a major role in the formation of cognitive functions through the gut-brain axis (GBA). This GBA is a bidirectional communication network that links the enteric and central nervous systems (ENS and CNS). This communication is established with the help of the autonomic nervous system (ANS), hypothalamic pituitary adrenal (HPA) axis and nerves present within the gastrointestinal (GI) tract. The formed GBA axis may influence mood, cognition and mental health^{5,24,44,45,60}. Recent studies showed that some bacterial strains may synthesize/regulate the production of neurotransmitter precursor compounds (NPCs) in the gut.

Several reports supported that various neurotransmitters (serotonin [5-HT], noradrenaline [NA], dopamine [DA] and γ -aminobutyric acid [GABA]) are possibly regulated bacterial species present in the oral/gut microbiome^{9,13,17,42,52,60}. In normal conditions, these neurotransmitters initiate calcium influx and other associated molecules involved in cognitive memory formation. Thus, it is proved that oral/gut microorganisms play a major role in the development of cognitive functions^{17,51,58-60,77}. The present review tries to present the impact of oral/gut dysbiosis in the development of cognitive impairment with the help of research in the field of gut-brain axis and cognition.

Impact of Oral-Gut-Brain Axis in the Development of Cognition Functions: Microbial species present in the oral and gut microbiota played a major role in the influence and development of host physiology and individual health maintenance. In healthy individuals, these microbial species present in the oral cavity play a major role in the partial digestion of nutrients along with the enzyme salivary amylase^{15,36,78}. Other than digestion, it also played a major role in the development of oral hygiene by preventing the multiplication and colonization of pathogenic microorganisms in the oral cavity. The regulatory activity of this oral microbiota played a major role in the development of cognitive functions through the oral-gut-brain axis. This oral-gut-brain axis links the oral and gut microbiota with the

brain and plays an unavoidable role in neuronal development, mental state, cognitive regulation, behavior, emotional regulation and various brain functions^{2,14}. This oral-gut-brain axis can be regulated by top-down (TD) and bottom-up (BU) approaches.

Three different pathways are involved in this TD and BU approach including endocrine, neural and immune (ENI) pathways. Brain recruits ENI pathways to influence the composition of gut microbiota through the hypothalamus pituitary adrenal (HPA) axis. During stress conditions, the HPA axis regulates the secretion of cortisol and thereby regulates cortisol activity against gut permeability (GP), gut microbiota composition (GMC) and barrier functions (BF). Unregulated cortisol activity affects GP, GMC and BF in an unimaginable state. Thereby, the TD approach is used by the brain to maintain GMC during stress conditions and other harmful conditions like gastritis^{2,14,78}.

In the BU approach, gut microbiota (GM) signals to the brain via the production of primary and secondary metabolites, cytokines and NPCs. During a healthy state, the BU approach may regulate the production of systemic tryptophan and stimulates the vagus and enteric nerves for establishing communication between GM and the brain^{3,10,17,42,53}. Several shreds of evidence prove that GM produces a wide range of neuroactive metabolites including neurotransmitters and their precursors. These NPCs are collectively secreted by the enteroendocrine cells and gut microbiota in the bloodstream. Released NPCs are transmitted to the brain through the blood-brain barrier (BBB) via the enteric nervous system (ENS)/vagus nerve^{34,46,70}. In a healthy state, a balanced state of oral and gut microbiota plays an important role in the maintenance of relationships with the brain.

The equilibrium of oral and gut microbiota is mainly affected by lifestyle changes like alcohol consumption, diet, smoking, pathogenic infections and alterations in the sleep cycle^{12,23,61,72}. Alterations in this microbiota result in brain activity changes and the development of neurodegenerative/neurological disorders resulting in oral and gut dysbiosis. Thus altered/dysbiosed microbiota plays a major role in the development of cognitive memory impairment. Developed cognitive impairment may be reversed with the help of probiotics and symbiotic supplementation. Thus the oral-gut-axis plays a major role in the development of cognitive functions in a healthy/disease-free state^{25,32,35,38,47,65}.

Interrelationship between Neurodegenerative Disorders and Oral-gut dysbiosis: Most neurodegenerative disorders (ND) are characterized by a gradual diminishing of cognitive functions especially the formation and retrieval of memory. Among the ND, Alzheimer's disease (AD) is caused by the earlier symptoms termed mild cognitive impairment (MCI). Few studies reported that probiotics can be used for the improvement of cognition during the early stages of AD^{26,31,66,67,80}. These studies proved that oral/gut dysbiosis

plays a major role in the development of MCI and also stated that oral passage was chosen as a possible route for the treatment of MCI with the help of probiotic microorganisms. Other than probiotic microorganisms, fecal microbial

transplants are also used as non-drug interventions for the treatment of cognitive loss during the early stages of AD^{6,18,27,30,46,57,69}.

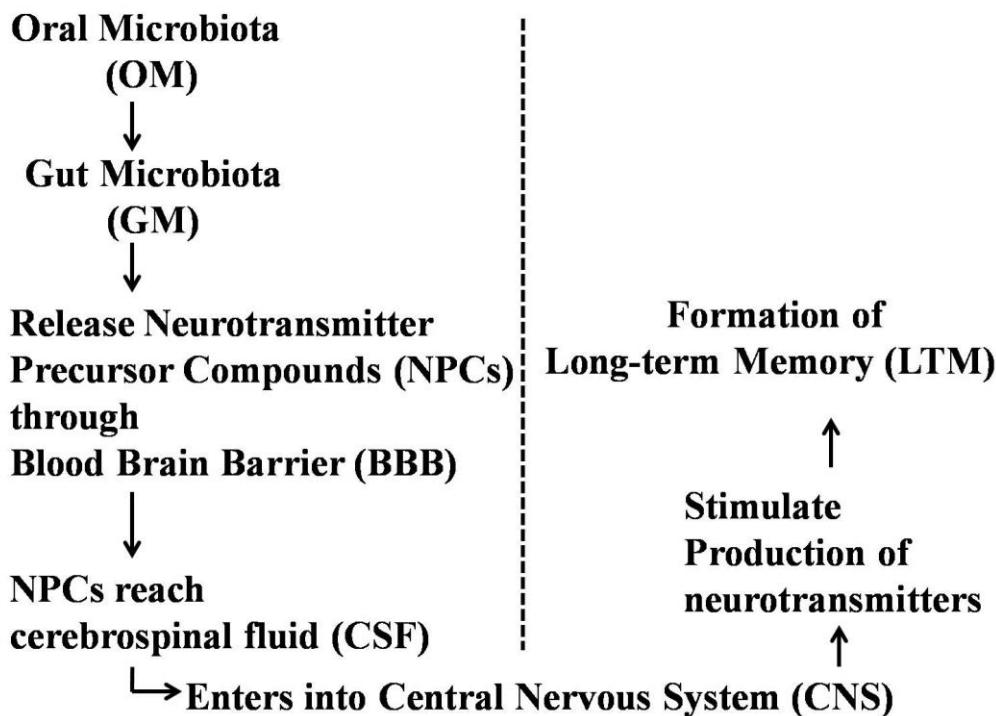


Figure 1: Role of Oral-Gut-Brain Axis in the development of cognitive memory during healthy conditions

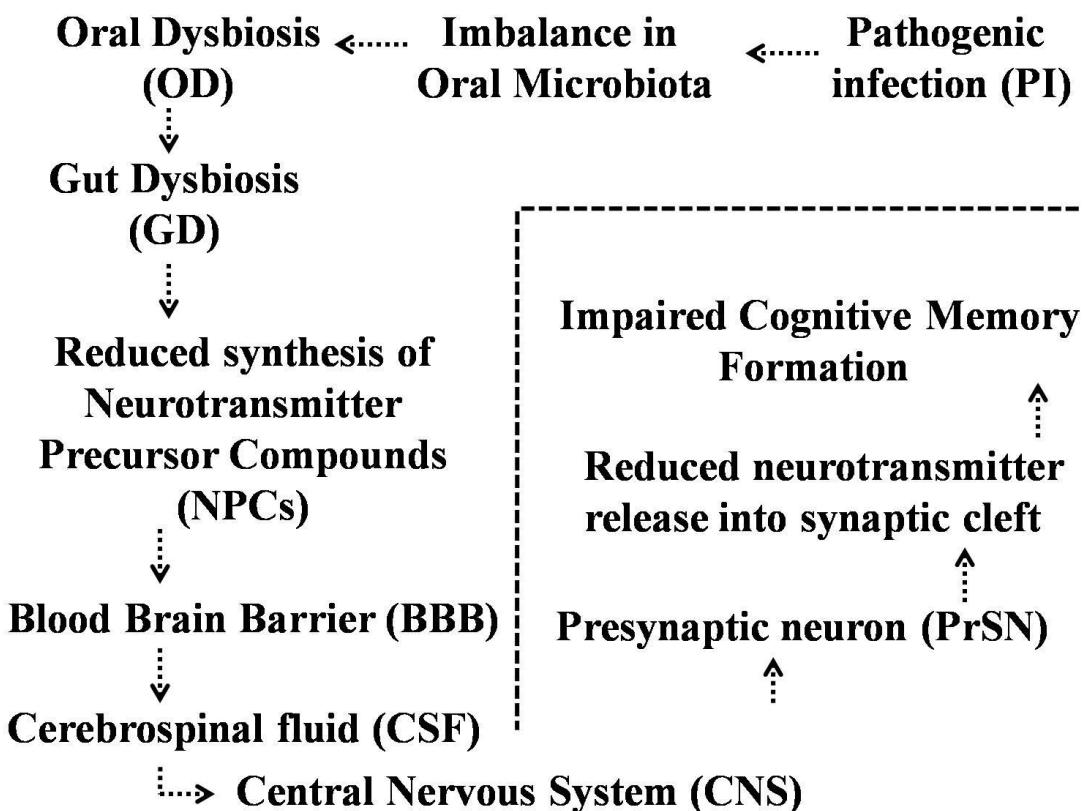


Figure 2: Effect of pathogenic infection on Oral-Gut dysbiosis which results in the development of impaired cognitive memory formation

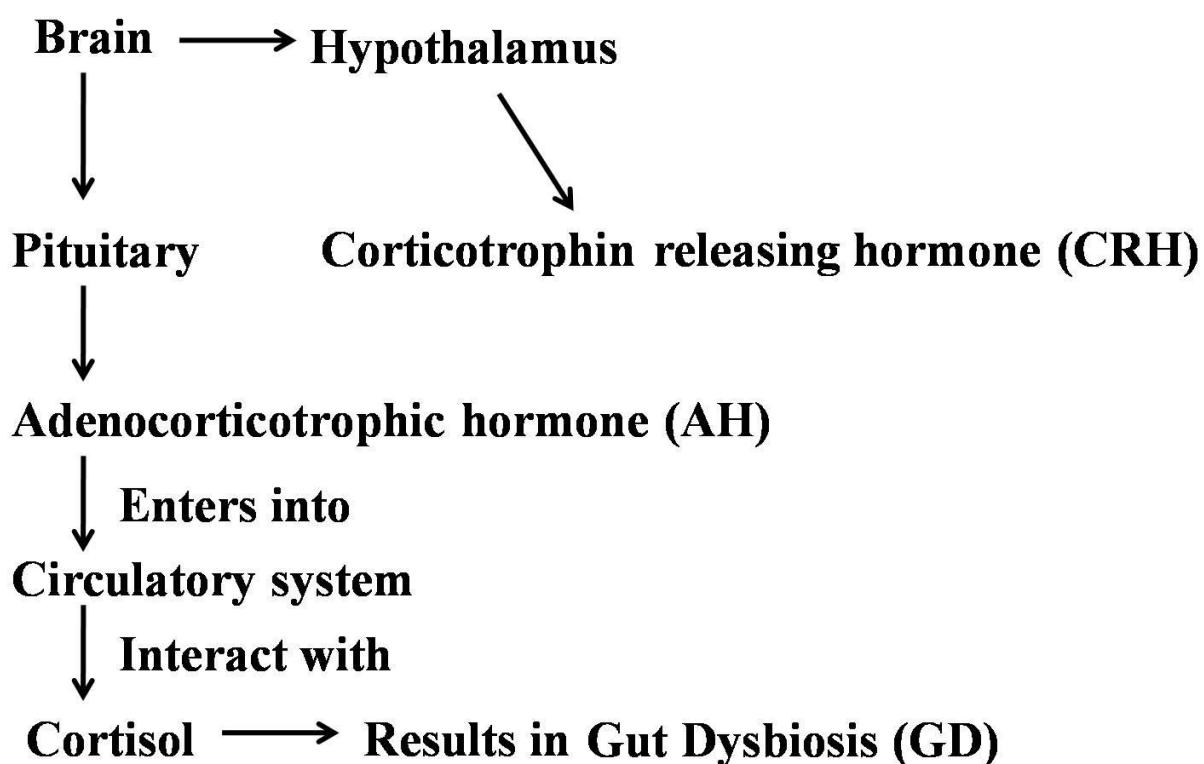


Figure 3: Flow cyclic diagram of the top-down pathway between the gut microbiota and the brain. The top-down pathway shows the impact of the oral-gut-brain axis in cognitive memory formation.

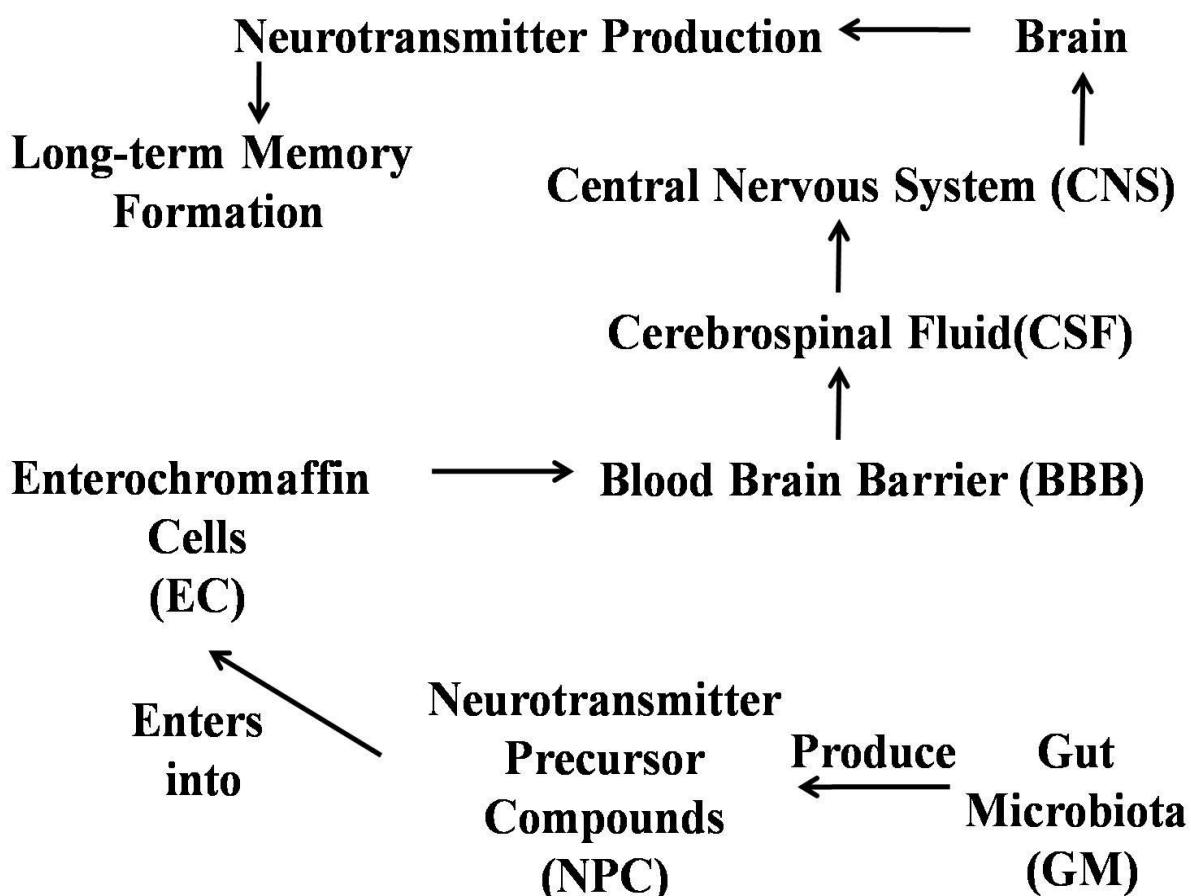


Figure 4: Bottom-up pathway showed the role of the oral-gut-brain axis in the development of cognitive memory formation

Recent research findings showed that oral hygiene plays a major role in the development of cognitive memory formation through the BBB via the vagus nerve. To prove this concept, Murugan⁴⁶ used oral infusions of *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli* in an animal model (*Carassius auratus*). Oral infusion studies revealed that *P. aeruginosa* played a major role in the development of cognitive decline during MCI. The outcome of this study proved that poor oral hygiene caused by oral dysbiosis plays a major role in the aberration of gut microflora which results in the development of impaired cognitive memory formation. Formed cognitive impairment may be result of a 'leaky gut' due to the translocation of small bacterial metabolites from the gut to the brain through the cerebrospinal fluid (CSF).

Few studies have reported that gut microbiota can influence the development of BBB and can influence its permeability through gastrointestinal hormonal secretion (GHS). This GHS allows certain drugs, metabolites and amino acids to enter the central nervous system (CNS) which also plays a major source for the brain's neuronal amyloid production. Other than amyloids, some bacterial lipopolysaccharides may also act as stimulators of neuroinflammation in MCI and AD^{8,46,51,55}. Thus oral-gut dysbiosis plays a major role in the development of cognitive decline in MCI, AD and other NDs via poor oral hygiene, pathogenic infection and other bacterial toxin transport^{46,74}.

Role of Probiotic, Probiotic and Synbiotic Supplementation in the Reversal of Oral-gut Dysbiosis: Recent reports showed that three different types of supplementation (probiotic, probiotic and symbiotic) may reverse the impaired cognitive memory formation with the help of oral-gut-brain axis^{4,11,43,47,58}. In cognitive reversal therapy, probiotics are most commonly used for the reversal of oral/gut dysbiosis. Probiotics taken in the form of food can retain the balance of normal gut flora. These probiotics are mostly bacterial species, used for the maintenance of good health in a host^{25,40,71,75}. Some of these intestinal probiotic microorganisms are needed for the production of short-chain fatty acid (SCFA) by anaerobic fermentation of dietary fibers. Produced SCFA is made up of carboxylic acid which is present in the aliphatic tails of 1-6 carbon and contains acetate, propionate and butyrate at the 2, 3 and 4th carbon.

Among the six carbon molecules, acetate is the most abundant SCFA synthesized in the gut with the help of enzyme acetyl CoA. Other than acetyl CoA, propionate and butyrate are also formed from carbohydrate metabolism that happens during the process of glycolysis^{39,64}. Produced SCFA is responsible for the transmission of NPCs from the gut to the brain through the BBB.

However, this SCFA declines with gut dysbiosis/microbial imbalance and age. Majorly, this gut dysbiosis/microbial imbalance is a result of increased pathogenic bacteria load

which further results in the neuroinflammation in brain. In these conditions, the oral-gut-brain axis plays a dual role in the development and reversal of cognitive impairment and neurodegenerative disorders during oral/gut dysbiosis^{22,33,39,41}.

Formed impaired cognitive memory may reverse with the help of NPCs produced by the probiotic microorganisms. After production, formed precursors compounds cross the BBB and reach the central nervous system (CNS) to synthesize needed neurotransmitters and activate neuronal transcription factors within the brain neuronal system^{17,81}. For example, serotonin (5-HT) is synthesized from the amino acid precursor (tryptophan). Initially, tryptophan is converted into an intermediate compound called 5-hydroxytryptophan (5-HTP) with the help of an enzyme (tryptophan hydroxylase). Finally, produced 5-HTP is reconverted to 5-HT with the help of aromatic amino acid decarboxylase (AACD)^{17,57,81}.

Produced 5-HT is further released into the synaptic cleft by the presynaptic neuron and binds with the specific receptors in the postsynaptic neurons to increase the calcium influx. An increase in calcium influx results in the activation of adenylyl cyclase (AC), which may further increase the level of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA). Increased levels of cAMP and PKA may result in the activation and phosphorylation of CREB. Phosphorylation of CREB further activates IEGs and PSD proteins which are responsible for cognitive long-term memory formation^{7,29,46,48-50,56,68}.

Conclusion

Recent studies showed that poor oral hygiene plays a major role in the development of impaired cognitive functions in the earlier stages of various neuronal disorders. The present review concisely represents the impact of oral-gut dysbiosis in the development of impaired cognitive memory formation with the help of CREB-mediated neuronal signaling pathways in the brain. Collective data presented in this review proved that normal oral and gut microbiota played a major role in the development of cognitive functions especially long-term memory formation by releasing serotonin (5-HT) from the presynaptic neuron.

For the production of 5-HT, presynaptic neuron needs an amino acid precursor tryptophan from the gut in the form of a neurotransmitter precursor compound. This precursor compound was produced by some beneficial microorganisms (probiotics) present in the gut. Synthesis of these precursor compounds was affected during pathogenic infection/microbiota imbalance which may result in oral-gut dysbiosis-formed oral-gut dysbiosis resulting in the development of cognitive impairment due to reduced synthesis and transportation of precursor compounds from gut to brain. Formed oral gut dysbiosis can be reversed with the help of probiotic microorganisms to restructure the synaptic plasticity during cognitive memory formation.

Acknowledgement

MM thanks DST-FIST (SR/FST/COLLEGE-/2022/1203) for providing infrastructural facilities in the Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore through DST-FIST PG College Level – A program.

References

1. Abraham, W.C., Jones, O.D. and Glanzman, D.L., Is plasticity of synapses the mechanism of long-term memory storage?, *Npj Science of learning*, **4**, 9 (2019)
2. Agirman G. and Hsiao, E.Y., SnapShot: The microbiota-gut-brain axis, *Cell*, **184**(9), 2524-2524.e1 (2021)
3. Ahmed H., Leyrolle Q., Koistinen V., Kärkkäinen O., Layé, S., Delzenne N. and Hanhineva K., Microbiota-derived metabolites as drivers of gut-brain communication, *Gut Microbes*, **14**(1), 2102878 (2022)
4. Ansari F., Neshat M., Pouriafar H., Jafari S.M., Samakkhah S.A. and Mirzakhani E., The role of probiotics and prebiotics in modulating of the gut-brain axis, *Frontiers in Nutrition*, **10**, 1173660 (2023)
5. Appleton J., The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health, *Integrative Medicine*, **17**(4), 28-32 (2018)
6. Asaoka D., Xiao J., Takeda T., Yanagisawa N., Yamazaki T., Matsubara Y., Sugiyama H., Matsubara Y., Sugiyama H., Endo N., Higa M., Kasanuki K., Ichimiya Y., Koida S., Ohno K., Bernier F., Katsumata N., Nagahara A., Arai H., Ohkusa T. and Sato N., Effect of Probiotic *Bifidobacterium breve* in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial, *Journal of Alzheimer's Disease*, **88**(1), 75-95 (2022)
7. Bai Y. and Suzuki T., Activity-Dependent Synaptic Plasticity in *Drosophila melanogaster*, *Frontiers in Physiology*, **11**, 161 (2020)
8. Bowland G.B. and Weyrich L.S., The Oral-Microbiome-Brain Axis and Neuropsychiatric Disorders: An Anthropological Perspective, *Frontiers in Psychiatry*, **13**, 810008 (2022)
9. Chen D., Yang X., Yang J., Lai G., Yong T., Tang X., Shuai O., Zhou G., Xie Y. and Wu Q., Prebiotic effect of fructooligosaccharides from *Morinda officinalis* on alzheimer's disease in rodent models by targeting the microbiota-gut-brain axis, *Frontiers in Aging Neuroscience*, **9**, 403 (2017)
10. Chen Y., Xu J. and Chen Y., Regulation of Neurotransmitters by the Gut Microbiota and Effects on cognition in Neurological Disorders, *Nutrients*, **13**(6), 2099 (2021)
11. Coutts L., Ibrahim K., Tan Q.Y., Lim S.E.R., Cox N.J. and Roberts H.C., Can probiotics, prebiotics and synbiotics improve functional outcomes for older people: a systematic review, *European Geriatric Medicine*, **11**(6), 975-993 (2020)
12. Cryan J.F., O'Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., Guzzetta K.E., Jaggar M., Long-Smith C.M., Lyte J.M., Martin J.A., Molinero-Perez A., Moloney G., Morelli E., Morillas E., O'Connor R., Cruz-Pereira J.S., Peterson V.L., Rea K., Ritz N.L., Sherwin E., Spichak S., Teichman E.M., van de Wouw M., Ventura-Silva A.P., Wallace-Fitzsimons S.E., Hyland N., Clarke G. and Dinan T.G., The Microbiota-Gut-Brain Axis, *Physiological Reviews*, **99**(4), 1877-2013 (2019)
13. de la Fuente-Nunez C., Meneguetti B.T., Franco O.L. and Lu T.K., Neuromicrobiology: How Microbes Influence the Brain, *ACS Chemical Neuroscience*, **9**(2), 141-150 (2018)
14. de Vos W.M., Tilg H., Hul M.V. and Cani P.D., Gut microbiome and health: mechanistic insights, *Gut*, **71**(5), 1020-1032 (2022)
15. Dekaboruah E., Suryavanshi M.V., Chettri D. and Verma A.K., Human microbiome: an academic update on human body site specific surveillance and its possible role, *Archives of Microbiology*, **202**(8), 2147-2167 (2020)
16. Deo P.N. and Deshmukh R., Oral microbiome: Unveiling the fundamentals, *Journal of Oral and Maxillofacial Pathology*, **23**(1), 122-128 (2019)
17. Dicks L.M.T., Gut Bacteria and Neurotransmitters, *Microorganisms*, **10**(9), 1838 (2022)
18. Elangovan S., Borody T.J. and Holsinger R.M.D., Fecal Microbiota Transplantation Reduces Pathology and Improves Cognition in a Mouse Model of Alzheimer's Disease, *Cells*, **12**(1), 119 (2023)
19. Evans H.T., Blackmore D., Götz J. and Bodea L., *De novo* proteomic methods for examining the molecular mechanisms underpinning long-term memory, *Brain Research Bulletin*, **169**, 94-103 (2021)
20. Ganesh A., Bogdanowicz W., Balamurugan K., Varman D.R. and Rajan, K.E., Egr-1 anti sense oligodeoxynucleotide administration into the olfactory bulb impairs olfactory learning in the greater short-nosed fruit bat *Cynopterus sphinx*, *Brain Research*, **1471**, 33-45 (2012)
21. Ganesh A., Bogdanowicz W., Haupt M., Marimuthu G. and Rajan K.E., Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat *Cynopterus sphinx* (Chiroptera: Pteropodidae), *Brain Research*, **1352**, 108-117 (2010)
22. Guo C., Huo Y., Li Y., Han Y. and Zhou D., Gut-brain axis: Focus on gut metabolites short-chain fatty acids, *World Journal of Clinical Cases*, **10**(6), 1754-1763 (2022)
23. Hillemacher T., Bachmann O., Kahl K.G. and Frieling H., Alcohol, microbiome and their effect on psychiatric disorders, *Progress in Neuropsychopharmacology and Biological Psychiatry*, **85**, 105-115 (2018)
24. Hong D., Zhang C., Wu W., Lu X. and Zhang L., Modulation of the gut-brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis, *Frontiers in Neurology*, **14**, 1133546 (2023)

25. Hou K., Wu Z., Chen X., Wang J., Zhang D., Xiao C., Zhu D., Koya J.B., Wei L., Li J. and Chen Z., Microbiota in health and diseases, *Signal Transduction and Targeted Therapy*, **7**(1), 135 (2022)

26. Hwang Y.H., Park S., Paik J.W., Chase S.W., Kim D., Jeong D., Ha E., Kim M., Hing G., Park S., Jung S., Lee S., Na K., Kim J. and Chung Y., Efficacy and safety of *Lactobacillus plantarum* C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial, *Nutrients*, **11**(2), 305 (2019)

27. Jemimah S., Chabib C.M.M., Hadjileontiadis L. and AlShehhi A., Gut microbiome dysbiosis in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis, *PLoS One*, **18**(5), e0285346 (2023)

28. Jia G., Zhi A., Lai P.F., Wang G., Xia Z., Zhang H., Che N. and Ai L., The oral microbiota-a mechanistic role for systemic diseases, *British Dental Journal*, **224**(6), 447-55 (2018)

29. Karen C., Shyu D.J.H. and Rajan K.E., *Lactobacillus paracasei* Supplementation Prevents Early Life Stress-Induced Anxiety and Depressive-Like Behavior in Maternal Separation Model – Possible Involvement of Microbiota-Gut-Brain Axis in Differential Regulation of MicroRNA124a/132 and Glutamate Receptors, *Frontiers in Neuroscience*, **15**, 719933 (2021)

30. Khatoon, S., Kalam, N., Rashid, S. and Bano, G., Effects of gut microbiota on neurodegenerative diseases, *Frontiers in Aging Neuroscience*, **15**, 1145241 (2023)

31. Kim M.S., Kim Y., Choi H., Kim W., Park S., Lee D., Kim D.K., Kim H.J., Choi H., Hyun D., Lee J., Choi E.Y., Lee D., Bae J. and Mook-Jung I., Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model, *Gut*, **69**(2), 283-94 (2020)

32. Korf J.M., Ganesh B.P. and McCullough L.D., Gut dysbiosis and age-related neurological diseases in females, *Neurobiology of Disease*, **168**, 105695 (2022)

33. Krishnamurthy H.K., Pereira M., Bosco J., George J., Jayaraman V., Krishna K., Wang T., Bei K. and Rajasekaran J.J., Gut commensals and their metabolites in health and disease, *Frontiers in Microbiology*, **14**, 1244293 (2023)

34. Lai Y., Dhingra R., Zhang Z., Ball L.M., Zylka M.J. and Lu K., Toward elucidating the human gut microbiota-brain axis: molecules, biochemistry and implications for health and diseases, *Biochemistry*, **61**(24), 2806-2821 (2021)

35. Leblhuber F., Ehrlich D., Steiner K., Geisler S., Fuchs D., Langer L. and Kurz K., The Immunopathogenesis of Alzheimer's Disease Is Related to the Composition of Gut Microbiota, *Nutrients*, **13**(2), 361 (2021)

36. Lee Y., Chung S.W., Auh Q., Hong S., Lee Y., Jung J., Lee G., Park H.J., Shin S. and Hong J., Progress in Oral Microbiome Related to Oral and Systemic Diseases: An update, *Diagnostics*, **11**(7), 1283 (2021)

37. Lin H., Chen C., de Belle J.S., Tully T. and Chiang A., CREB A and CREB B in two identified neurons gate long-term memory formation in *Drosophila*, *Proceedings of the National Academy of Sciences of the United States of America*, **118**(37), e2100624118 (2021)

38. Ma Q., Xing C., Long W., Wang H.Y., Liu Q. and Wang R., Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis, *Journal of Neuroinflammation*, **16**(1), 53 (2019)

39. Markowiak-Kopeć P. and Śliżewska K., The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome, *Nutrients*, **12**(4), 1107 (2020)

40. Mehra A., Arora G., Sahni G., Kaur M., Singh H., Singh B. and Kaur S., Gut microbiota and Autism Spectrum Disorder: From pathogenesis to potential therapeutic perspectives, *Journal of Traditional and Complementary Medicine*, **13**(2), 135-149 (2023)

41. Meyers G.R., Samouda H. and Bohn T., Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability, *Nutrients*, **14**(24), 5361 (2022)

42. Miri S., Yeo J., Abubaker S. and Hammami R., Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome?, *Frontiers in Microbiology*, **14**, 1098412 (2023)

43. Mörkl S., Butler M.I., Holl A., Cryan J.F. and Dinan T.G., Probiotics and the Microbiota-Gut-Brain Axis: Focus on Psychiatry, *Current Nutrition Reports*, **9**(3), 171-182 (2020)

44. Murugan M., Impact of Antibiotic Oral Infusions on the Development of Cognitive Dysfunctions, *Res. J. Biotech.*, **20**(2), 183-194 (2025)

45. Murugan M., Probiotic Strain *Lactobacillus fermentum* as a Potential Agent for the Reversal of Non-Periodontal Microorganisms Induced Cognitive Dysfunctions, *Res. J. Biotech.*, **20**(1), 55-68 (2025)

46. Murugan M., Impact of Oral Non-periodontal Pathogens (*Klebsiella pneumonia*, *Streptococcus pneumonia* and *Staphylococcus aureus*) in the induction of Cognitive Memory Impairment, *Res. J. Biotech.*, **19**(12), 151-162 (2024)

47. Murugan M., Pycocyanin: A virulence factor of *Pseudomonas aeruginosa* in the disruption of brain homeostasis regulation in gold fish *Carassius auratus*, *Journal of Applied and Natural Science*, **16**(3), 949-963 (2024)

48. Murugan M., Adithya R. and Pruthivi S., Role of Probiotic Microorganisms in the Brain Plasticity Development, *Journal of Experimental Biology and Agricultural Sciences*, **12**(3), 354-365 (2024)

49. Murugan M., Elakkiya V., Darshini M. and Varshini M., Exploring the Potential Role of *Lactobacillus plantarum* in the Reversal of Induced Cognitive Long-term Memory Impairment, *Journal of Experimental Biology and Agricultural Sciences*, **12**(2), 175-187 (2024)

50. Murugan M., Antony Mathew M.T., Yaswanth S. and Mallikarjun V., Role of Probiotic Strain *Lactobacillus acidophilus* in the Reversal of Gut Dysbiosis Induced Brain Cognitive Decline, *Journal of Experimental Biology and Agricultural Sciences*, **12**(1), 36-48 (2024)

51. Murugan M., Impact of *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli* Oral Infusions on Cognitive Memory Decline in Mild Cognitive Impairment, *Journal of Experimental Biology and Agricultural Sciences*, **11(3)**, 581-592 (2023)

52. Murugan M., Effects of Probiotics, Prebiotics and Synbiotic Supplementation on Cognitive Impairment: A Review, *Journal of Experimental Biology and Agricultural Sciences*, **10(1)**, 1-11 (2022)

53. Murugan M., Bogdanowicz W., Marimuthu G. and Rajan, K.E., Odour discrimination learning in the Indian greater short-nosed fruit bat (*Cynopterus sphinx*): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus, *Journal of Experimental Biology*, **221** (Pt 12), jeb175364 (2018)

54. Murugan M., Rajathevi D.M., Jeyaraj E., Kayalvizhi N. and Rajan K.E., MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat *Cynopterus sphinx*, *Gene*, **671**, 10-20 (2018)

55. Murugan M., Varman D.R., Sudhakar S. and Rajan K.E., Activity-dependent expression of miR-132 regulates immediate early gene induction during olfactory learning in the greater short-nosed fruit bat, *Cynopterus sphinx*, *Neurobiology of Learning and Memory*, **120**, 41-51 (2015)

56. Narengiwa, Kong W., Lan F., Awan U.F., Qing H. and Ni J., The Oral-Gut-Brain AXIS: The influence of Microbes in Alzheimer's Disease, *Frontiers in Cellular Neuroscience*, **15**, 633735 (2021)

57. O'Donnell M.P., Fox B.W., Chao P., Schroeder F.C. and Sengupta P., A neurotransmitter produced by gut bacteria modulates host sensory behaviour, *Nature*, **583(7816)**, 415-420 (2020)

58. Ortega M.A., Álvarez-Mon M.A., García-Montero C., Fraile-Martínez Ó., Monserrat J., Martínez-Rozas L., Rodríguez-Jiménez R., Álvarez-Mon M. and Lahera G., Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities, *Molecular Psychiatry*, **28(7)**, 2645-2673 (2023)

59. Peng X., Cheng L., You Y., Tang C., Ren B., Li Y., Xu X. and Zhou X., Oral microbiota in human systematic diseases, *International Journal of Oral Science*, **14(1)**, 14 (2022)

60. Pitchaikani S., Murugan M., Govindan P., Kathiravan G. and Shakila H., Highlighting the Importance of Matrix Metalloproteinase 1, 8 and 9 Expression during the Progression of *Mycobacterium tuberculosis* Infection, *Journal of Experimental Biology and Agricultural Sciences*, **12(1)**, 49-59 (2024)

61. Rajan K.E., Olfactory learning and memory in the greater short-nosed fruit bat *Cynopterus sphinx*: the influence of conspecifics distress calls, *Journal of Comparative Physiology A, Neuroethology, Sensory, Neural and Behavioral Physiology*, **207(5)**, 667-679 (2021)

62. Reza-Zaldívar E.E. and Jacobo-Velázquez D.A., Comprehensive Review of Nutraceuticals against Cognitive Decline Associated with Alzheimer's Disease, *ACS Omega*, **8(39)**, 35499-35522 (2023)

63. Romo-Araiza A., Gutiérrez-salmeán G., Galván E.J., Hernández-Frausto M., Herrera-López G., Romo-Parra H., García-Contreras V., Fernández-Presas A.M., Jasso-Chávez R.J., Borlongan C.V. and Ibarra A., Probiotics and probiotics as a therapeutic strategy to improve memory in a model of middle-aged rats, *Frontiers in Aging Neuroscience*, **10**, 416 (2018)

64. Rusch J.A., Layden B.T. and Dugas L.R., Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis, *Frontiers in Endocrinology*, **14**, 1130689 (2023)

65. Rutsch A., Kantsjö J.B. and Ronchi F., The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology, *Frontiers in Immunology*, **11**, 604179 (2020)

66. Sedghi L., DiMassa V., Harrington A., Lynch S.V. and Kapila Y.L., The oral microbiome: Role of key organisms and complex networks in oral health and disease, *Periodontology 2000*, **87(1)**, 107-131 (2021)

67. Silva Y.P., Bernardi A. and Frozza R.L., The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication, *Frontiers in Endocrinology*, **11**, 25 (2020)

68. Solanki, R., Karande, A. and Ranganathan P., Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration, *Frontiers in Neurology*, **14**, 1149618 (2023)

69. Suganya K. and Koo B., Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions, *International Journal of Molecular Sciences*, **21(20)**, 7551 (2020)

70. Sun J., Xu J., Ling Y., Wang F., Gong T., Yang C., Ye S., Ye K., Wei D., Song Z., Chen D. and Liu J., Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice, *Translational Psychiatry*, **9(1)**, 189 (2019)

71. Thangaleela S., Shanmugapriya V., Murugan M., Radhakrishnan K. and Rajan K.E., Alterations in MicroRNA-132/212 Expression Impairs Fear Memory in Goldfish *Carassius auratus*, *Annals of Neuroscience*, **25(2)**, 90-97 (2018)

72. Tiwari P., Dwivedi R., Bansal M., Tripathi M. and Dada R., Role of Gut Microbiota in Neurological Disorders and Its Therapeutic Significance, *Journal of Clinical Medicine*, **12(4)**, 1650 (2023)

73. Varela-Trinidad G.U., Domínguez-Díaz C., Solórzano-Castañedo K., Íñiguez-Gutiérrez L., Hernández-Flores T.J. and Fafutis-Morris M., Probiotics: Protecting Our Health from the Gut, *Microorganisms*, **10(7)**, 1428 (2022)

74. Varesi A., Campagnoli L.I.M., Chirumbolo S., Candiano B., Carrara A., Ricevuti G., Esposito C. and Pascale A., The brain-gut-microbiota interplay in depression: A key to design innovative therapeutic approaches, *Pharmacological Research*, **192**, 106799 (2023)

75. Verma D., Garg P.K. and Dubey A.K., Insights into the human oral microbiome, *Archives of Microbiology*, **200(4)**, 525-540 (2018)

76. Wan J. and Fan H., Oral Microbiome and Alzheimer's Disease, *Microorganisms*, **11(10)**, 2550 (2023)

77. Wang X., Zhang P. and Zhang X., Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity, *Molecules*, **26(19)**, 6076 (2021)

78. Yang X., Yu D., Xue L., Li H. and Du J., Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice, *Acta Pharmaceutica Sinica B*, **10(3)**, 475-487 (2020)

79. Zhang X., Han Y., Huang W., Jin M. and Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs, *Acta Pharmaceutica Sinica B*, **11(7)**, 1789-1812 (2021)

80. Zhu G., Zhao J., Zhang H., Chen W. and Wang G., Probiotics for Mild Cognitive Impairment and Alzheimer's Disease: A Systematic Review and Meta-Analysis, *Foods*, **10(7)**, 1672 (2021)

81. Zhu G., Zhao J., Zhang H., Wang G. and Chen W., Gut Microbiota and its Metabolites: Bridge of Dietary Nutrients and Alzheimer's Disease, *Advances in Nutrition*, **14(4)**, 819-839 (2023).

(Received 21st April 2024, accepted 26th June 2024)
